

94-775 Lecture 5: Finding Possibly Related Entities

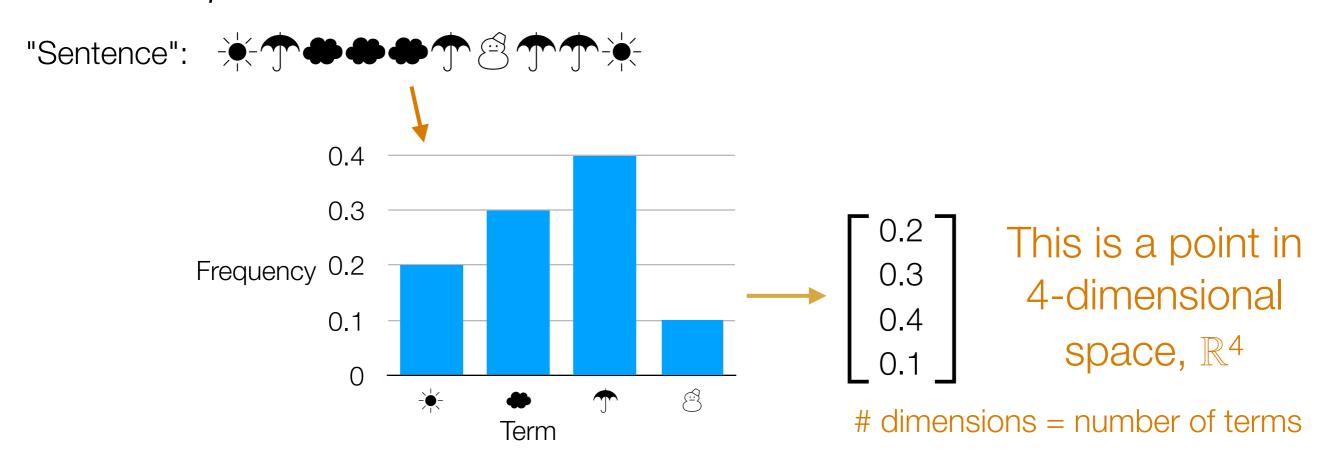
George Chen

Quiz Format

- Bring a laptop that has Anaconda Python 3.6 properly installed and that you can write in a Jupyter notebook with
 - You are responsible for making sure that your laptop is working and has enough battery life! (If you need to plug it in, sit near an outlet)
- The exam will be open book, open internet
- No collaboration
- If you use external resources, cite your sources
- A mix of shorter conceptual questions (can involve code), and a longer coding question

Recap: Basic Text Analysis

- Represent text in terms of "features"
 (such as how often each word/phrase appears)
 - Can repeat this for different documents:
 represent each document as a "feature vector"



In general (not just text): first represent data as feature vectors

Finding Possibly Related Entities

How to automatically figure out Elon Musk and Tesla are related?

The solar batteries have reportedly been spotted in San Juan's airport.

By John Patrick Pullen October 16, 2017

Exactly one week after Tesla CEO Elon Musk suggested his company could help with Puerto Rico's electricity crisis in the aftermath of Hurricane Maria, more of the company's Powerwall battery packs have arrived on the island, according to a photo snapped at San Juan airport Friday, Oct. 13.

Source: http://fortune.com/2017/10/16/elon-musks-tesla-powerwalls-have-landed-in-puerto-rico/

Co-Occurrences

For example: count # news articles that have different named entities co-occur

	Apple	Facebook	Tesla
Elon Musk	10	15	300
Mark Zuckerberg	500	10000	500
Tim Cook	200	30	10

Big values → possibly related named entities

Different Ways to Count

- Just saw: for all doc's, count # of doc's in which two named entities co-occur
 - This approach ignores # of co-occurrences within a specific document (e.g., if 1 doc has "Elon Musk" and "Tesla" appear 10 times, we count this as 1)
 - Could instead add # co-occurrences, not just whether it happened in a doc
- Instead of looking at # doc's, look at co-occurrences within a sentence, or a paragraph, etc

Bottom Line

- There are many ways to count co-occurrences
- You should think about what makes the most sense/is reasonable for the problem you're looking at

Co-Occurrences

For example: count # news articles that have different named entities co-occur

	Apple	Facebook	Tesla
Elon Musk	10	15	300
 Mark Zuckerberg	500	10000	500
Tim Cook	200	30	10

Big values → possibly related named entities

How to downweight "Mark Zuckerberg" if there are just way more articles that mention him?

Key idea: what would happen if people and companies had nothing to do with each other?

	Apple	Facebook	Tesla
Elon Musk	10	15	300
Mark Zuckerberg	500	10000	500
Tim Cook	200	30	10

Probability of drawing "Elon Musk, Apple"?

Probability of drawing a card that says "Apple" on it?

10 of these cards:

Elon Musk, Apple

15 of these cards:

Elon Musk, Facebook

300 of these cards:

Elon Musk, Tesla

:

10 of these cards:

Tim Cook, Tesla

Co-occurrence table

	Apple	Facebook	Tesla
Elon Musk	10	15	300
Mark Zuckerberg	500	10000	500
Tim Cook	200	30	10

Total: 11565

Joint probability table

	Apple	Facebook	Tesla	
Elon Musk	10 /11565	15 /11565	300 /11565	sum to get
Mark Zuckerberg	500 /11565	10000 /11565	500 /11565	P(Elon Musk)
Tim Cook	200 /11565	30 /11565	10 /11565	

Total: 11565

Joint probability table

	Apple	Facebook	Tesla	
Elon Musk	0.00086	0.00130	0.02594	0.02810
Mark Zuckerberg	0.04323	0.86468	0.04323	0.95115
Tim Cook	0.01729	0.00259	0.00086	0.02075
	0.06139	0.86857	0.07004	_

Recall: if events A and B are independent, P(A, B) = P(A)P(B)

Joint probability table if people and companies were independent

	Apple	Facebook	Tesla	
Elon Musk	0.00173	0.02441	0.00197	0.02810
Mark Zuckerberg	0.05839	0.82614	0.06662	0.95115
Tim Cook	0.00127	0.01802	0.00145	0.02075
	0.06139	0.86857	0.07004	1

Recall: if events A and B are independent, P(A, B) = P(A)P(B)

What we actually observe

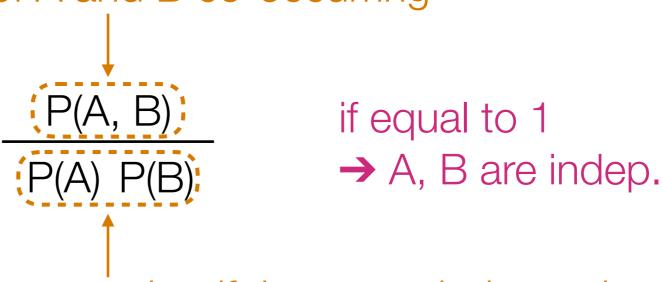
	Apple	Facebook	Tesla
Elon Musk	0.00086	0.00130	0.02594
Mark Zuckerberg	0.04323	0.86468	0.04323
Tim Cook	0.01729	0.00259	0.00086

What should be the case if people are companies are independent

	Apple	Facebook	Tesla
Elon Musk	0.00173	0.02441	0.00197
Mark Zuckerberg	0.05839	0.82614	0.06662
Tim Cook	0.00127	0.01802	0.00145

Pointwise Mutual Information (PMI)

Probability of A and B co-occurring



Probability of A and B co-occurring if they were independent

PMI(A, B) is defined as the log of the above ratio

PMI measures (the log of) a ratio that says how far A and B are from being independent

Example PMI Calculation

Demo

Looking at All Pairs of Outcomes

- PMI measures how P(A, B) differs from P(A)P(B) using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

Phi-square =
$$\sum_{A, B} \frac{[P(A, B) - P(A) P(B)]^{2}}{P(A) P(B)}$$

Chi-square = $N \times Phi$ -square

Phi-square is between 0 and 1

0 → pairs are all indep.

Measures how close *all* pairs of outcomes are close to being indep.

N = sum of all co-occurrence counts (in upper right of triangle earlier)

Phi-Square/Chi-Square Calculation

Demo

Summary: Co-Occurrences

 Joint probability P(A, B) can be poor indicator of whether A and B co-occurring is "interesting"

 Find interesting relationships between pairs of items by looking at PMI

 Intuition: "Interesting" co-occurring events should occur more frequently than if they were to co-occur independently

Co-occurrence Analysis Applications

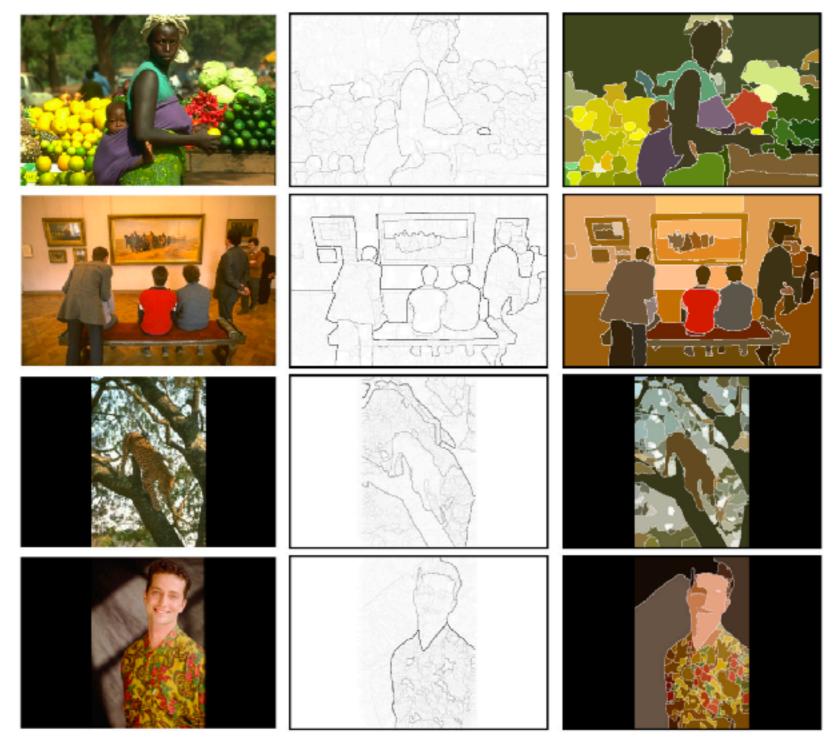
- If you're an online store/retailer: anticipate when certain products are likely to be purchased/ rented/consumed more
 - Products & dates
- If you have a bunch of physical stores: anticipate where certain products are likely to be purchased/ rented/consumed more
 - Products & locations
- If you're the police department:
 create "heat map" of where different criminal activity occurs
 - Crime reports & locations

Co-occurrence Analysis Applications

If you're an online store/retailer: anticipate when cortain products are likely to be purchased/ re Examples of data to take advantage of: data collected by your organization social networks news websites sed/ blogs rei Web scraping frameworks can be helpful: Scrapy Selenium (great with JavaScript-heavy pages) burs

Crime reports & locations

Example Application of PMI: Image Segmentation



Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H. Adelson. Crisp boundary detection using pointwise mutual information. ECCV 2014.

Example Application of PMI: Word Embeddings

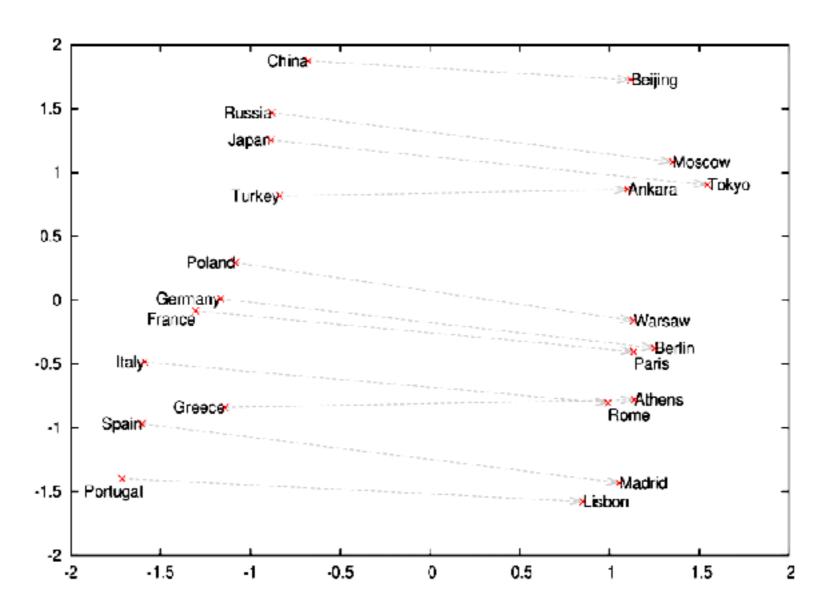
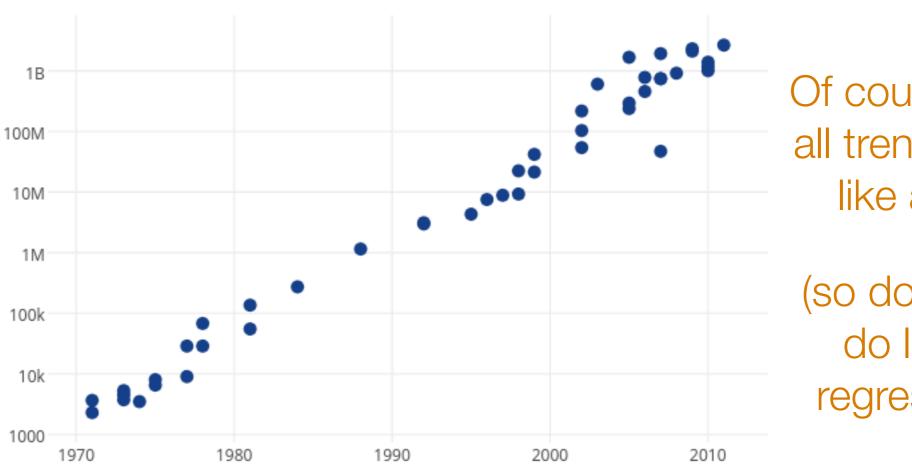


Image source: https://deeplearning4j.org/img/countries_capitals.png

Continuous Measurements

- So far, looked at relationships between discrete outcomes
- For pair of continuous outcomes, use a scatter plot



Of course, not all trends look like a line

(so don't just do linear regression!)

Image source: https://plot.ly/~MattSundquist/5405.png